
UNCECOMP 2017
2nd ECCOMAS Thematic Conference on

Uncertainty Quantification in Computational Sciences and Engineering
M. Papadrakakis, V. Papadopoulos, G. Stefanou (eds.)

Rhodes Island, Greece, 15–17 June 2017

ADAPTIVE EMULATION-BASED RELIABILITY ANALYSIS

P. O. Hristov1, F. A. DiazDelaO1, K. J. Kubiak2 and U. Farooq3

1Institute for Risk and Uncertainty, University of Liverpool
Liverpool L69 7ZF, United Kingdom

e-mail: {sgphrist, fado}@liv.ac.uk

2 School of Computing and Engineering, University of Huddersfield
Queensgate, Huddersfield, HD1 3DH

e-mail: k.kubiak@hud.ac.uk
3 Parker Hannifin Manufacturing (UK) Ltd.

e-mail: umer.farooq@parker.com

Keywords: Efficient reliability analysis, Gaussian process emulation, Subset simulation.

Abstract. This paper presents an approximation method for performing reliability analysis
with high fidelity computer codes at a reasonable computational cost. Complex models are
common in science and engineering due to their ability to substitute costly and some times in-
feasible practical experiments. These models, however, suffer from high computational cost.
This causes problems when performing sampling - based reliability analysis, since the failure
modes of the system typically occupy a small region of the input space and thus relatively large
sample sizes are required for the accurate estimation of their characteristics. The sequential
sampling method proposed in this article, combines Gaussian process-based optimisation and
Subset Simulation. Gaussian process emulators construct a statistical approximation to the out-
put of the original code, which is both affordable to use and has its own measure of predictive
uncertainty. Subset Simulation is used to efficiently populate those regions of the initial approx-
imation which are likely to lead to the performance function exceeding a predefined critical
threshold. Among all samples, the ones that are likely to contribute most to increasing the qual-
ity of the surrogate in the vicinity of the failure regions are selected, using Bayesian optimisation
methods. The iterative nature of the method ensures that an arbitrarily accurate approximation
of the failure region in performance space is developed at a reasonable computational cost. The
presented method is applied to a number of benchmark problems.
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1 INTRODUCTION

Reliability analysis, in the most general sense, is concerned with the calculation of a prob-
ability of failure, pF and the identification of the failure domain, F of a function y = η(x).

pF =

∫
F

η(x)dx (1)

The most straightforward method to evaluate the multidimensional integral in (1) is direct
Monte Carlo (DMC) sampling. The accuracy of DMC estimates increases with the number
of samples. For a typical system the failure region, F is small with respect to its input domain
and is considered a rare event. Thus, many thousands of evaluations of the code have to be per-
formed to ensure that F is populated with sufficient number of samples to allow a reasonably
accurate estimation of its properties. However, engineering models are in general computa-
tionally expensive to evaluate and thus it becomes infeasible to use DMC methods with them.
A method widely used in engineering for performing reliability analysis is Subset Simulation
(SuS) [1]. Despite the significant improvement SuS brings over DMC, it could still be quite
expensive to use it directly with the code. In order to address the computational cost of the sim-
ulator, one can build a surrogate model for the output of the code. There exists a large number of
methodologies for approximating the output of expensive codes, see e.g. [2]. A well-established
approach is Gaussian process emulation (GPE), which builds a statistical approximation to the
output of the code. Once the GPE is built it can be used as an inexpensive substitute for the sim-
ulator, on which reliability analysis can be performed. The issue with such use of the surrogate
is that it is typically trained via some space-filling sampling plan which aims at exploring the
input domain of the simulator with as few points as possible. Such sampling plans are based on
Monte Carlo methods and usually select points in high probability regions. This is tantamount
to saying that the surrogate that needs to be used to predict rare events is built on frequent
events. The topic of using surrogate models to perform reliability analysis is not a new one and
there are a number of frameworks proposed to reduce the cost of the computations. It should
be stressed that the reliability analysis literature is as vast as the number of methods that feature
in it. Therefore a review of the techniques which are related to the procedure presented in this
article is provided. Most, if not all reviewed work relies on sequential sampling for the gradual
improvement of the surrogate in the vicinity of the failure domain. It is worth mentioning that
some authors such as [3, 4] have explored those strategies for the accurate estimation of target
regions in general. They consider that the emulator should only be refined in the regions of
interest and that in order to obtain accurate reliability estimates a good quality surrogate is all
that is needed. An opposing view is given by [5] where the authors work directly with the re-
liability estimates as a measure of analysis quality. The present article agrees with and extends
the former idea.

A short literature review focused on reliability analysis is provided below. In general, most
approaches follow a framework which is composed of a sampling rule, utility function, stopping
criterion and any other specific details. The authors of [6] use constraint boundary sampling to
select improvement points. A combination between a MCMC sampling and k-means cluster-
ing is used to select new data points in [7]. An approach based on the first order reliability
method is used in [8] and a probabilistic classification function is presented in [9]. In [10]
the authors derive a stepwise uncertainty reduction (SUR) methodology based on expected im-
provement (EI) [11], but formulated from a Bayesian risk perspective. They use SUR to select
new design points to improve the surrogate. Other methods that use EI or EI-based strategies
are [12,13,14]. Other previously used utility functions include, the U-function [13,15], and the
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improved U-function [16], least improvement function [17] and an unnamed expression in [18].
All approaches based on a utility function, except [14] search the entire input space for a can-
didate point that maximizes that function and add it to the training plan for the next iteration
of the algorithm. Furthermore, many of the aforementioned strategies rely on a pre-generated
population of samples (e.g. [13]), which could prove to be a suboptimal approach. Last from a
sampling point of view, the majority of the methods sample one point at a time, which, given
the dynamical nature of sequential sampling could either miss important regions of the domain,
or slow down convergence. These issue are addressed in the present article.The other major part
of all adaptive algorithms is the stopping condition. This ranges from the use of reliability in-
dices [7,8] through error in the estimation of the failure probability [5,13,15,16,17] and forms
of measure of the discrepancy between the GPE predictions and code observations [4,6,9,18] to
thresholds on the learning function [3, 12, 14]. Most frameworks use some form of statistic re-
lated to the surrogate, which, depending on the use and complexity of the problem, could prove
insufficiently robust. In this paper a stopping condition which relies implicitly on the similarity
between the surrogate and the model is proposed to terminate the learning process.

Finally, Gaussian process emulation is not the only surrogate used in reliability analysis.
Among others, general response surfaces [19, 20, 21, 22], neural networks [23] and support
vector machines [24] have been used.

The aim of this paper is to propose an improved efficient algorithm for performing reliability
analysis with complex computer codes.

The remainder of the article is structured as follows: Section 2 briefly introduces Subset
Simulation. Section 3 summarizes the theory behind Gaussian process emulation. Section 4
introduces the proposed method and Section 5 demonstrates the performance of the algorithm
before any conclusions are drawn in Section 6.

2 SUBSET SIMULATION

One very important problem in engineering is the estimation of the probability of failure, pF
of a system given in Eq. (1). In the context of numerical simulations failure can be defined
as the scenario where a response variable (output) of the model, exceeds some threshold of
acceptable system behaviour. The output, y is related to the input variables, x ∈ X ⊂ Rd, via
some mapping provided by the model,

y = η(x) (2)

thus the failure domain is defined as the values of x which cause the system response, y to
exceed some critical value yc

F = {x : η(x) > yc} (3)

Estimating pF is associated with sampling from F . Usually, for a well designed system the true
value of pF is very small, that is, F is a rare event. Also, a typical model has a high dimensional
input space and often the failure domain of that space is disjoint, so sampling from it poses a
significant challenge. SuS [1] aims to divide the rare event into a series of nested less-rare
events.

F ⊂ Fm ⊂ Fm−1 ⊂ . . . ⊂ F1 (4)

In Eq. (4) F1 is a relatively frequent event. Given that sequence, it can be shown that the prob-
ability of the rare event F could be expressed as a product of larger conditional probabilities:

P(F ) = P(F1) · P(F1|F2) · . . . · P(F |Fm) = pF (5)
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Beginning from the unconditional level F1, the algorithm “probes” the input space X via direct
Monte Carlo sampling. Then, based on the values of y in Eq. (2) it constructs the first interme-
diate failure threshold, y∗1 < yc, defining a “relaxed failure domain”, F1. SuS then populates F1

using a MCMC algorithm. The generation of intermediate levels continues until a predefined
number of samples lie in the true failure domain F . At the end of the algorithm an estimate of
the complementary CDF (CCDF) of the response function is generated [25].

3 GAUSSIAN PROCESS EMULATION

Simulators used to model complex scientific phenomena are usually very computationally
expensive. This is to say that a single evaluation of the code’s output at a given set of input
values takes sufficiently long time, as to prohibit any type of analysis which requires a large
number of model runs. These include finite element modelling, computational fluid dynamics
and other ubiquitously used simulation tools. Even though SuS requires fewer samples than
DMC to estimate the failure probability, it still relies on such amounts of simulation runs which
result in very large computational times. Clearly, the analysis cannot be carried out using the
code directly. In such cases it is common to use a less expensive approximation of the code out-
put. These approximations are widely known as metamodels or emulators. There is a number of
existing metamodelling techniques, but for reasons outlined below, Gaussian process emulation
(GPE) is used. Formally, the model structure is expressed as:

η(x) = h(x)Tβ + Z(x) (6)

where η(x) is the simulator output as a function of its inputs, h(x)T is a known function of the
inputs, β is a vector of unknown coefficients and Z(x) is a Gaussian process with zero mean
and covariance σ2c(x,x′;ψ). The function h(x) should express any expert opinion about the
form of the simulator output and together with the parameter β reflects its overall trend. In
practice, however, the trend is often taken to be constant as h(x) = 1 and β ∈ R, charging the
Gaussian process in Eq. (6) with the responsibility of capturing the behaviour of the underlying
function [26]. In the formulation above, σ2 is a scale parameter and ψ is a parameter specifying
the behaviour of the correlation function, c(·, ·;ψ).

Using Gaussian process emulation, a posterior probability distribution for the mean of the
computer code’s output can be constructed, conditional on a relatively small number of sim-
ulator runs, y and the parameter estimators, θ̂ = {β̂, σ̂2, ψ̂}. It can be shown that at any
unobserved point, x∗ this distribution has the form:

η(x∗)|y, θ̂,∼ N (m(·), C(·, ·)) (7)

with posterior predictive mean (also called a surrogate):

m(x∗) = β̂ + t(x∗)TC−1(y − 1β̂) (8)

and posterior predictive variance:

C(x∗,x′
∗
) = σ̂2(c(x∗,x∗; ψ̂)− t(x∗)TC−1t(x′∗)) (9)

In Eq. (8) and Eq. (9), C ∈ Rn×n is such that Cij = c(xi,xj; ψ̂); t(x∗) ∈ Rn such that
t(x∗) = (c(x∗,x1; ψ̂), . . . , c(x∗,xn; ψ̂))T ; and 1 ∈ Rn such that 1 = (1, . . . , 1)T .The process
of learning θ̂ from observed data is referred to as training and is well described in [2] from
a classical prospective or in [27, 28] from Bayesian standpoint. Once the emulator is trained,
its posterior distribution can be sampled many times at an affordable cost to provide data for
various analyses.
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4 GAUSSIAN PROCESS SUBSET SIMULATION

4.1 Initialization and sampling

In order to reliably use the emulator it needs to be of sufficient quality around the estimated
failure regions. This is not usually the case with GP approximations built using data from the
high probability regions. For the physical model it is assumed that the critical failure threshold,
yc is known (given a priori) and sensible (i.e. there is a set of values of x for which η(x) > yc).
The algorithm starts by building a GP emulator based on a parsimonious set of data points,
selected according to a space-filling strategy (e.g. Latin hypercube sampling (LHS) [29]). The
GPE can be validated to check if there are any large discrepancies between the emulator and
simulator as in [30]. This is done to ensure that the initial approximation is of a reasonable
overall quality. It is very likely that the original threshold is not reachable from the first GPE
which learned about the model from frequent data. That is to say,

F1 = {x : E1[η(x)|y] > yc} = ∅ (10)

where Fj is the failure domain according to the jth emulator and Ej[·] is its predictive mean,
whose functional form is given in Eq. (8). In general, for a high-dimensional model it will be
feasible, but slow to search the input domain exhaustively, since a lot of samples are needed to
uncover the location of the failure modes if such are present. Computationally this translates
to the calculation of large number of distances between points. Therefore, it is proposed to
use SuS to sample from the posterior predictive mean of the emulator. As outlined in Section
2, SuS converges when a predefined number of data points lie in the failure domain. If it is
indeed the case that F1 = ∅, the algorithm will be unable to naturally converge due to all
candidate samples being rejected. Then, an alternative “failure level”, yGP

c1
could be set for

which P(E1[η(x)|y] > yGP
c1

) > 0. This approach gives rise to an intermediate emulator failure
domain with respect to yGP

c1
, denoted as FGP

1 . This domain and its associated probability may
still be a rare event and thus SuS is used to populate it efficiently. The purpose here is to sample
from FGP

1 rather than to estimate the probabilities of failure (conditional or otherwise). The
emulator is still a very efficient approximation of the code and thus in theory one can search it
exhaustively. However, a preference is given SuS as it leads to a quick and reliable convergence,
especially in high dimensions. The algorithm can be ran with a fairly large number of samples
(a lot less than if exhaustive search is performed) at each level in order to ensure that even truly
rare subregions of FGP

1 are populated. This raises the question of how to calculate yGP
cj

such
that SuS converges, while at the same time it explores potentially interesting regions of the
input space. The candidates vary from a single significant point (e.g. minimum or maximum)
through moment estimators (e.g. sample mean) to more sophisticated equiprobable measures
(e.g. sample percentiles). The criterion that was found to give satisfactory results is presented
in Eq. (11). Essentially, the idea is to select the current threshold as the average of all training
responses that are lying above the previous critical level and then take the average between the
resulting quantity and the previous level value. This method ensures that the current threshold
will lie above the previous one, while also safeguarding against setting it too high and discarding
regions that may lead to system failure.

yGP
cj

=


∑N

i=1 yi
N

if j = 1

1
2

[∑N
i=1 yiI

(
yi>yGP

c(j−1)

)
N

+ yGP
c(j−1)

]
if j > 1

(11)

In Eq. (11), yi are all N training responses and I(·) is an indicator function.
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4.2 Sample selection

When SuS converges, it populates the space with points whose predicted response lies above
the current failure level yGP

cj
. Among all samples XFGP

j that lie in FGP
j some additional point/s,

xadd at which to sample the model have to be selected before fitting the next emulator prediction.
Since the model is expensive, these points have to be prudently selected such that they maximize
the amount of information gain from sampling at their locations. A popular choice for selecting
the coordinates is the expected improvement (EI) function [11].

E[I(x)]j =(yc − Ej[η(x)|y])Φ

(
yc − Ej[η(x)|y]

Vj[η(x)|y]

)
+ (12)

+Vj[η(x)|y]φ

(
yc − Ej[η(x)|y]

Vj[η(x)|y]

)
The EI expression as used in this framework is given in Eq. (12). Following the notation above,
the subscript j denotes information regarding the jth emulator. This includes Vj[·] which is
the posterior variance of the jth emulator given in its functional form in Eq. (9). The symbols
Φ(·) and φ(·) denote the cumulative and probability distribution functions of a standard normal
random variable, respectively. Expected improvement is a strategy that balances exploitation
of the emulator mean and exploration of the design space based on the its variance. Gaussian
process emulators are particularly suited for use with EI, since a predictive variance is generated
as part of sampling the posterior distribution.

xadd = argmax
XFj

E
[
I
(
XFj

)]
j

(13)

Expected improvement can be run on each point in FGP
j and the one that maximizes it will

be selected as the one that is expected to bring the greatest improvement in the quality of the
next level GPE. However, applying expected improvement directly to the data poses the risk
of neglecting subregions in the intermediate emulator failure domain, FGP

j . Unless FGP
j is

definitely not disjoint, the presence of separate modes has to be accounted for. This could be
achieved by, first identifying the structure of FGP

j , detecting any modes and calculating EI on
the samples in each mode. A clustering algorithm (here DBSCAN [31]) is used to discover the
separate failure sub-domains. Ultimately, the design plan for the emulator at the next level is
composed of the current design plus the new points, formally Dj+1 = Dj ∪ {xadd, η(xadd)},
where xadd is given in Eq. (13).

Adaptively improving the approximation from the GP will represent the failure regions with
increasing accuracy. However, due to the generic nature of both Subset Simulation and expected
improvement, new points can be added in regions where the GPE is already good enough for
the purposes of estimation of the failure characteristics. Thus a condition is needed which
dictates how to choose improvement points. The posterior predictive variance of the emulator
is a good indication of the local quality of the approximation. Since the GPE is an interpolator,
at any given training point Vj[η(x)|y] = 0. Therefore, if at any level of the GPE improvement
the value of the posterior predictive variance for a sample point lies below a certain level ε,
that point should not be added to the design for the next level. This strategy prevents the
algorithm from suggesting new samples in regions where the emulator is already doing well
and thus saving potentially appreciable time for code evaluations. The correct value of ε is
problem dependent since it scales with the output of the simulator. Of course it could be set
arbitrarily small, but attention needs to be paid to the trade-off between final emulator accuracy
and computational cost.
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4.3 Stopping condition

As outlined above, the GPE could be made to reflect the failure regions of the true function
with an arbitrary precision. However to keep the procedure efficient it needs to be refined just
enough for the purposes of the underlying analysis. In order to stop the iterative generation of
predictions a rule inspired by SuS is proposed. Consider running subset simulation with the true
function. By design SuS will stop generating new levels once a sufficient number of samples
from the last level lie in the failure domain, F . It follows that a necessary and sufficient criterion
for the accuracy of the emulator is the ability of SuS to generate the same number of samples
that belong to the failure domain and have Vj[η(x)|y] < ε. If this condition is satisfied, SuS
will not be able to differentiate the model from the emulator.

5 NUMERICAL EXPERIMENTS

In this section, the performance of the algorithm is demonstrated with three benchmark prob-
lems. These were chosen to test different aspects of GPSS. The function in Section 5.1 presents
a challenging limit state contour for the GPE. The problem in Section 5.2 tests the ability of
GPSS to deal with disjoint failure domains and Section 5.3 explores the performance of the
algorithm in high dimensions.

5.1 Four branch series system

The four branch series system is popular in the reliability literature [17]. The performance
function has the following form:

η(x) = min


3 + 0.1(x1 − x2)2 − (x1 + x2)/

√
2

3 + 0.1(x1 − x2)2 + (x1 + x2)/
√

2

(x1 − x2) + 6/
√

2

(x2 − x1) + 6/
√

2

 (14)

where x = [x1, x2] ∈ [−5, 5]2. The two inputs are considered independent and historically have
been subject to standard normal distribution. However here a uniformly distributed sample is
assumed to reduce the concentration of initial training points in the failure domain. The GPE
was trained with n = 20 LHS samples. GPSS with ε = 10−4 was used with this function on a
failure threshold, yc = 2. At this level the associated probability of failure, pF ≈ 7.44 × 10−2.
The challenge associated with this function is the complex limit state contour which has some
nearly discontinuous points. The progression of the estimation of the surface via GPSS is shown
in Figure 1. The coefficient of variation and relative error were estimated from 100 runs of SuS
on the improved surface as δpF = 4.2% and ∆pF = 1.5%, respectively. The estimated mean
failure probability was p̄F = 7.62 × 10−2 based on the same 100 runs. A comparison between
the CCDF from SuS and CCDF from GPSS is shown in Figure 2. The nature of the local quality
of the surrogate is evident from the variations in the first potion of the curve. Indeed this is as
intended, since there is no attempt to improve the surrogate globally.

5.2 Mixture of Gaussians

This function was created to test the robustness of the GPSS algorithm. The choice of a
Gaussian function as constructive element is justified by the fact that this work is not trying to
challenge the emulator itself, but to improve it such that it enables the accurate prediction of the
characteristics of the failure domain.
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Figure 1: The performance of GPSS on the four branch series system. The true limit
state contour, yc = 2 is in black and that estimated by the GP - in red. The titles of
the tiles show different stages of the algorithm. The number of samples in each tile is
n = {20, 24, 29, 34, 40, 45, 50, 55, 60}.

The function has the form:

η(x) =
102

2
[aφ(xA) + bφ(xB) + cφ(xC) + dφ(xD)] (15)

xA = 10 (x− 1/4)

xB = 10 (x− 3/4)

xC = [10 (x1 − 3/4) , 10 (x2 − 3/4)]

xD = [10 (x1 − 1/3) , 10 (x2 − 5/6)]

In Eq. (15) x = [x1, x2] ∈ [0, 1]2 and φ(·) is the standard normal PDF. The fractions in the
expressions for xA . . .xD are location parameters and can be chosen arbitrarily. The constants
a, b, c andd are used to select how many peaks belong to the failure domain. For this experiment
a = b = 1, c = 0.85 and d = 1.1, meaning that peak c is just outside of failure level set as
yc = 7.9. The associated failure probability is pF = 7.27× 10−3.
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Figure 2: Complementary CDF estimates for the four branch system. Each curve is based of
two levels of SuS (blue dots) and 3000 samples per level.

The GPE was initially trained with n = 20 LHS points. The variance threshold was set to,
ε = 10−5. Figure 3 shows the process of discovery of the failure domain. The plots in the first
row show the contour values of the intermediate levels yGP

c(j−1)
in Eq. (11) (red line), because

yc was not accessible at these GPE stages. During most of the process points were added in
all three modes. However from level j = 16 to the end the algorithm could not improve the
approximations in modes a and b any further and stopped sampling from them. This is reflected
in the last row of Figure 3 where the green dots show the new samples in each consecutive frame
- it can be seen that samples are only being added to mode d. This feature of the algorithm is
useful in the presence of highly disjoint failure domains, where the local quality of the GPE
can increase independently and resources will not be wasted where they are not needed. As
before, some statistics about the probability of failure were calculated from 100 runs of SuS.
The mean was found to be p̄F = 7.31× 10−3. The corresponding c.o.v. and relative error were
δpF = 14.1% and ∆pF = 2.7%, respectively. It is interesting to note that the same figures based
on a 100 runs of direct Monte Carlo simulation with 100000 samples were δDMC

pF
= 3.7% and

∆pDMC
F = 0.7%. Figure 4 shows the CCDF curve for the failure probability estimated with

SuS, the one obtained via GPSS and the one calculated relying on the unimproved GPE. It can
be seen, that subset simulation was unable to find points from the GPE that belong to F .

5.3 10D wing weight model

The last experiment that was conducted is based on a high dimensional model for estimating
the weight of the wing of a general aviation aircraft. The functional expression is:

0.036S0.758
w W 0.0035

fw

(
A

cos2 Λ

)0.6

q0.006λ0.04
(

100tc

cos Λ

)
(NzWdg)

0.49 + SwWp (16)

The nomenclature of Eq. (16) is somewhat involved and can be found in [2]. For the purposes
of this paper the dimensionality of the problem is of interest. GPSS was ran on the model with
5000 samples per level for SuS and variance threshold, ε = 10−5. Since it was known a priori
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that more points will be added to the training sample for the GPE, the initial DOE consisted of
60 LHS points. The procedure took 108 iterations with a final data point count of 168 samples.
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Figure 3: The performance of GPSS on the mixture function. The title in each tile shows
the level of the algorithm. The red contours in the first row correspond to the interme-
diate levels from Eq. (11) at the specified level. The green diamonds in the last row
show the samples added since the previous tile. The number of samples in each tile is
n = {20, 22, 24, 44, 50, 59, 62, 63, 64}.

Figure 5 (left-centre) shows a set of diagnostics from the first and the last fit of the GPE
for 100 LHS data points. The left column shows the observed functional response versus pre-
dictions generated from the GPE. The error bars reflect the 95% credible interval for each pre-
diction. In the centre column the individual prediction errors (IPE) are plotted as suggested
in [30]. The IPE should have a student-t distributions and should therefore lie in the interval
[−2, 2], 95% of the time. There is not much of a difference between the two sets of plots which
suggests that the global quality of the surrogate has not changed significantly - the GPE is a good
global predictor before and after GPSS. The same cannot be said about the local approximation
of the failure region.
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Figure 4: Complementary CDF of the mixture function according to the GPE (green), GPSS
(red) and SuS (black). The blue circles show the intermediate levels of SuS. Each level was
populated with 3000 samples.
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Figure 5: Diagnostics for the quality of the GPE before (top left-centre) and after (bottom left-
centre) GPSS. The correlation between observation and prediction at 100 data points is shown
on the left. The distribution of IPE is shown in the centre. The correlation between observation
and prediction at points originally lying in F before and after GPSS, top right and bottom right,
respectively. In all cases mean and 95% credible interval are given in dark grey dots and light
grey error bars, respectively. Dashed lines on top mark F on both axes.

Figure 5 (right) shows a comparison between the prediction of function response, originally
in the failure domain, before (top) and after (bottom) GPSS. Results are obvious - the correlation
between observed and predicted values is much higher. The mean probability of failure was
p̄F = 1.97 × 10−5. The corresponding c.o.v. and relative error were δpF = 21.8% and ∆pF =
11.4%, respectively. These were calculated based on 100 runs of SuS. Finally, Figure 6 shows
a comparison between the complementary CDF curves from the GPE (green), GPSS (red) and
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SuS (black).
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Figure 6: Complementary CDF of the mixture function according to the GPE (green), GPSS
(red) and SuS (black). The blue circles show the intermediate levels of SuS. Each level was
populated with 5000 samples. The global quality of the GPE before GPSS is good only in the
high probability regions.

The CCDF curve from the first GPE level summarizes the diagnostics from Figure 5 - the
original surrogate provides a good approximation in the high probability regions of the perfor-
mance function, but fails to capture its behaviour in the rare regions.

6 CONCLUSIONS

In this paper an adaptive algorithm for reliability analysis, called GPSS, was presented.
GPSS is a combination between Gaussian process emulation and subset simulation which al-
lows an efficient characterization of rare events and estimation of the associated probabilities
of failure. The reduction in the number of samples require by GPSS as compared to SuS and
DMC is significant. The algorithm was validated with three benchmark problems. Future work,
as planned by the authors includes reliability analysis of computationally expensive computer
codes, where the advantages offered by GPSS can be appreciated.
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